By continuing to use this site, you agree to the use of cookies in accordance with our privacy policy.

Science and Mathematics

Quantum Information Processing Using Multimode Circuit-QED

February 6, 2020 at 3:30pm5:00pm EST

Physics Building, 202 / 204

This event has already occurred. The information may no longer be valid.

The Department of Physics welcomes Dr. Srivatsan Chakram for their weekly colloquium. Dr.  Chakram is a Postdoctoral Researcher at the University of Chicago.

Abstract: Superconducting circuits have emerged as one of the most promising platforms for quantum computation as a result of rapid advances in coherence and control over the past few decades. Most modern superconducting processors are based on the transmon circuit, and rely on nearest-neighbor interactions for gate operations and entanglement. In this talk, I will present an alternative architecture for superconducting quantum information and simulation, involving many harmonic modes of a multimode cavity coupled and controlled by a single transmon circuit. This multimode circuit-QED system leverages the long coherence times and restricted decoherence channels of superconducting microwave cavities. Additionally, the architecture has a high degree of connectivity while being hardware efficient, with gate operations performed between arbitrary pairs of cavity modes using only a few control lines that drive the transmon. Our implementation of such a processor uses – the quantum flute, a novel rectangular 3D multimode cavity with a tailored mode dispersion, that is protected from seam loss and possesses O(10) distinct modes with photon lifetimes approaching a millisecond. I will present various schemes for universal control of the multimode Hilbert space using the dispersively coupled transmon, and discuss schemes for engineering designer photon-photon interactions.

This event was published on January 23, 2020.

Event Details