By continuing to use this site, you agree to the use of cookies in accordance with our privacy policy.

Engineering and Technology

BMCE Faculty Candidate: Where Bioengineering Meets Physical Chemistry – Elucidating Design Principles of Ionic Liquids for Transdermal Drug Delivery

January 13, 2020 at 9:30am10:30am EST

Bowne Hall, 414

This event has already occurred. The information may no longer be valid.

Eden Tanner, Ph.D., from Harvard University, is a candidate for a faculty position in the Department of Biomedical and Chemical Engineering, part of the cluster hiring initiative in the BioInspired Institute.

Abstract: Ionic liquids (ILs), which consist of anions and bulky, asymmetric organic cations that are liquid below 100 ℃, have been used in a variety of contexts, including energy and battery applications, in catalysis, and in synthesis. Their popularity is due to a range of favorable properties such as low volatility, recyclability, and tuneability, meaning that structural changes in the ionic components result in different observed physicochemical properties. Recently, this solvent class has been employed in a biomedical context, where ILs such as choline geranate have shown great promise in navigating biological barriers and acting as efficacious transdermal drug delivery agents, transporting large proteins such as insulin across the skin and into the bloodstream. However, there is currently limited information on the chemical origins of this transport enhancement. What makes an ionic liquid great at transdermal delivery? In this talk I will focus on the use of physical chemistry principles and techniques such as 2D Nuclear Magnetic Resonance Spectroscopy and Fourier Transform Infrared Spectroscopy to elucidate design principles to answer this question, and, more broadly, to highlight the opportunities that lay at the intersection of physical chemistry and bioengineering.

This event was first published on January 9, 2020 and last updated on January 10, 2020.


Event Details